Safety, Efficacy, and Exposure-Response of NNZ-2591, a Synthetic Analog of Cyclic Glycine-Proline (cGP), an IGF-1 Metabolite, for the Treatment of Phelan-McDermid Syndrome in Children and Adolescents

Russell Wada, PhD¹; Helen Kastrissios, PhD¹; Mark A Milad, PharmD²; Milad Ghomlaghi, PhD¹; Nancy E Jones, PhD³; Liza Squires, MD³; Larry Glass, BA³

¹QuanTx Consulting, Mountain View, CA, USA; ²Milad Pharmaceutical Consulting, Plymouth, MI, USA; ³Neuren Pharmaceuticals, Camberwell, Vic, AUS

Objective

To evaluate the treatment effects and pharmacokinetics of NNZ-2591, a synthetic analog of the insulin-like growth factor 1 metabolite cyclic glycine-proline, in children and adolescents with Phelan-McDermid syndrome (PMS)

Conclusions

NNZ-2591 appeared well tolerated and demonstrated a favorable safety profile in children and adolescents with PMS

Clinicians and caregivers observed meaningful improvements in clinically important aspects of PMS with NNZ-2591 treatment, including communication, behavior, cognition/learning, and socialization

Systemic NNZ-2591 exposure was estimated using a population pharmacokinetic model; improvements in the Clinical Global Impression of Improvement overall score were generally observed in participants with a 24-hour steady-state area under the curve >300 µg·h/mL

Background

Phelan-McDermid syndrome (PMS) is a rare genetic condition associated with delayed neurodevelopment that is usually caused by genetic deletions or abnormalities affecting the SHANK3 gene1

- People with PMS can experience broad and severe symptoms, including global developmental delay, intellectual disability, absent or severely delayed speech, and behavioral differences (eg, autistic behaviors)¹
- There are no approved treatments for PMS¹; current treatment approaches focus on symptom management
- NNZ-2591 is a synthetic analog of cyclic glycine-proline (cGP), which is a metabolite of insulin-like growth factor 1 (IGF-1) that is naturally present in the brain
- NNZ-2591 is being evaluated in children and adolescents with PMS

Methods

Study Design and Participants

- Twice-daily orally administered NNZ-2591 was evaluated in a phase 2, 13-week, multisite, open-label clinical trial (NCT05025241; Figure 1)
- Eligible participants were aged 3–12 years at screening, had a clinical PMS diagnosis, and had a disease-causing genetic abnormality of the SHANK3 gene
- Primary endpoints were safety, tolerability, and pharmacokinetics (PK); secondary endpoints were efficacy measures

Figure 1. Study Design Oral NNZ-2591, twice daily Baseline Follow-up observation Dose titrated to 12 mg/kg^a 4–6 weeks Week 13 Week 0 Week 6 Week 15

^aNNZ-2591 doses were titrated up from 4 mg/kg to 8 mg/kg to 12 mg/kg; a data safety monitoring committee reviewed data before each dose increase.

Assessments

Safety

• Treatment-emergent adverse events (TEAEs) were monitored from the first dose of study drug through the end of the follow-up period

Pharmacokinetics

- Blood samples were collected before and after dosing at weeks 2, 6, and 13
- NNZ-2591 concentrations were determined with a validated liquid chromatography-tandem mass spectrometry method Efficacy

• Signs and symptoms relevant to PMS were evaluated with 14 assessments, including 5 PMS-specific assessments (Figure 2)

Figure 2. Assessments

PMS-Specific Assessments

Global
Clinical Global Impression of Improvement ²
Caregiver Impression of Change
Clinical Global Impression of Severity ²

Symptom-Specific Caregiver Top 3 Concerns PMS Clinician Domain-Specific Rating Scale

Other Assessments

Quality of Life

Quality of Life Inventory – Disability Impact of Childhood Neurological Disability

Behavior Problems Inventory – Short Form

Aberrant Behavior Checklist-2

Communication MacArthur-Bates Communicative Development Inventory

Observer-Reported Communication Ability Behavior

Adaptive Behavior/Self-Care Vineland Adaptive Behavior Scales-3

Gastrointestinal Health

Gastrointestinal Health Questionnaire

Sleep Child Sleep Habits Questionnaire

Analyses

- A Wilcoxon signed-rank test was used to evaluate improvements from baseline in efficacy outcomes • A population PK model was developed using sparse PK sampling data from the phase 2 trial of NNZ-2591 in
- children and adolescents with PMS and serial PK sampling from a phase 1 study of NNZ-2591 in healthy adults (NCT04379869) • Each participant's NNZ-2591 exposure was calculated using participant-specific PK parameters estimated from the
- population PK model
- The minimum effective NNZ-2591 exposure was visually determined from an exposure-response plot of the relationship between 24-hour steady-state area under the curve (AUC24 ss) and Clinical Global Impression of Improvement (CGI-I) scores

Methods (cont'd)

- Simulations of NNZ-2591 exposures for a virtual pediatric population were performed
- A virtual pediatric population was created by sampling the body weight distribution by age for children aged
- 3–12 years, reported by the Centers for Disease Control and Prevention
- PK parameters were generated by sampling interparticipant variability from the population PK model - Steady-state NNZ-2591 exposures following 12 mg/kg and 13 mg/kg dosing regimens were simulated for the virtual
- pediatric population; exposure projections were summarized by weight bands (>20 kg or ≤20 kg)

Results

Participants

• Of the 18 participants enrolled in the phase 2 study, two-thirds were male, and most were White (Table 1)

Table 1. Demographics

Characteristic	NNZ-2591 N = 18
Sex, n (%)	
Male	12 (66.7)
Female	6 (33.3)
Age, years	
Mean (SD)	8.6 (2.7)
Median (range)	8.3 (4.4, 13.0)
Race, n (%)	
White	16 (88.9)
Black	1 (5.6)
Multiple	1 (5.6)
Weight, kg	
Mean (SD)	30.4 (10.8)
Median (range)	28.7 (16.8, 51.0)

Safety

- NNZ-2591 was well tolerated and demonstrated a favorable safety profile (Table 2)
- Most TEAEs were mild or moderate in severity and not related to study drug
- 3 participants discontinued the study due to TEAEs, none of which were related to study drug

Table 2. Safety Overview

NNZ-2591 N = 18
17 (94.4)
1 (5.6) ^a
1 (5.6)
3 (16.7) ^b
0

b3 participants discontinued due to adverse events (COVID-19, 2; seizure, 1); all were considered not related to study drug.

Pharmacokinetics

^aAUC_{34.55} was calculated as the daily dose divided by apparent clearance.

- An allometrically scaled 1-compartment population PK model with first-order absorption and linear clearance was developed to describe the PK of NNZ-2591 in children and adolescents with PMS
- The exponents used to scale the apparent clearance (CL/F) and the apparent volume of distribution (V/F) by body
- weight were 0.75 and 1, respectively - PK was dose proportional over the dose range of 3 to 12 mg/kg
- The NNZ-2591 PK parameters for a child with PMS weighing 30 kg were estimated based on the population PK model (Table 3)

Table 3. Pharmacokinetic Parameters of NNZ-2591 Estimated for Children With PMS

Parameter	NNZ-2591 12 mg/kg, twice daily		
Apparent clearance (CL/F), L/h	1.89		
Apparent volume of distribution (V/F), L	20.2		
Half-life, h	7.4		
AUC _{24,ss} ^a , μg•h/mL	381		
AUC _{24 ss} , 24-hour steady-state area under the curve; h, hour; PMS, Phelan-McDermid syndrome.			

Results (cont'd)

Efficacy

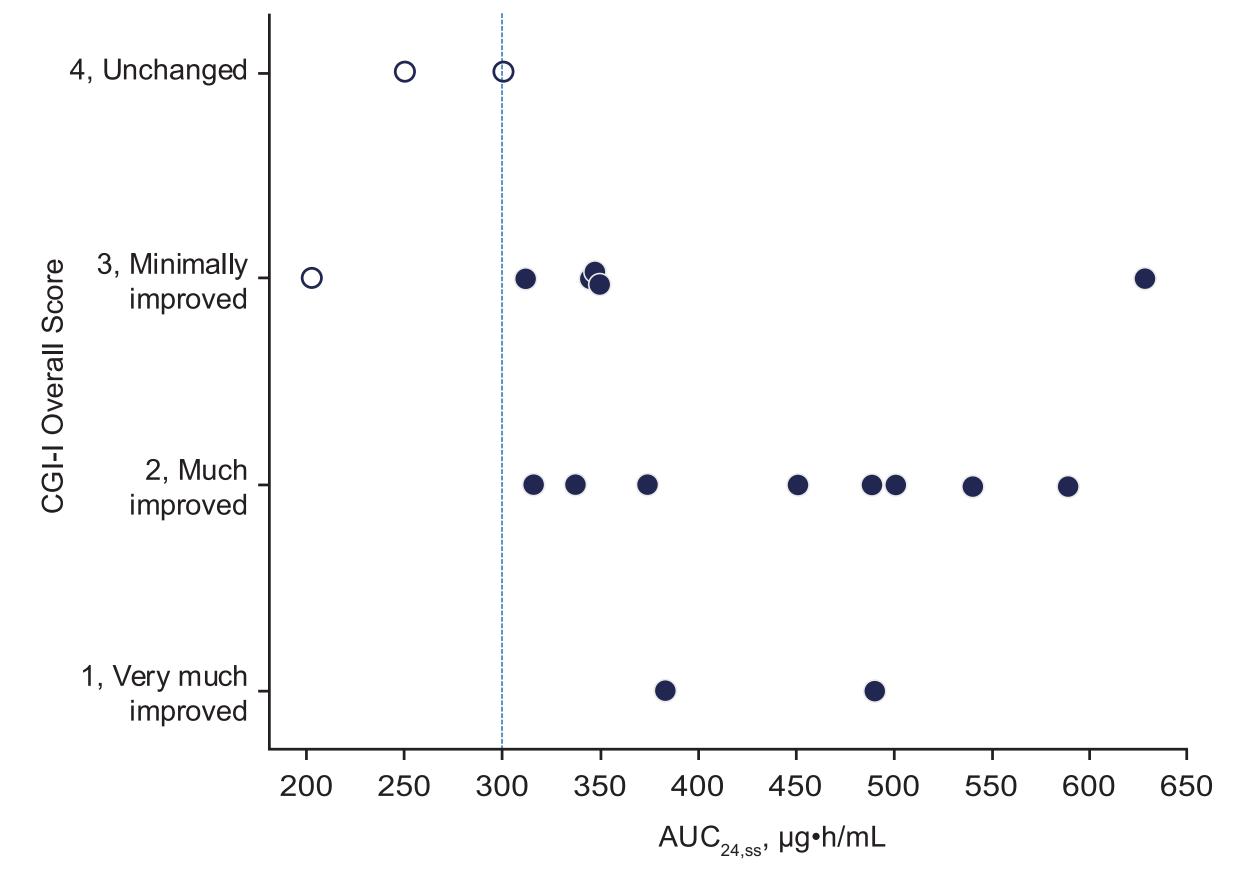
• Participants who received NNZ-2591 experienced statistically significant improvements from baseline for 10 out of 14 efficacy outcomes assessing clinically important symptoms of PMS, including both clinician- and caregiver-assessed outcomes (Table 4)

Table 4. Efficacy Outcomes With NNZ-2591

	NNZ-2591 N = 18		
Assessment, Overall or Total Score, mean (SD)	Baseline	Week 13	<i>P</i> value
CGI-I		2.4 (0.9)	<.0001***,a
CIC	_	2.7 (1.0)	.0003***,a
CGI-S	4.5 (1.0)	4.1 (1.0)	.0156*
PMS-DSRS	5.7 (2.1)	4.7 (2.2)	.0156*
Caregiver top 3 concerns	25.9 (3.4) ^b	20.1 (7.1) ^b	.0005***
GIHQ frequency	41.6 (29.6)	32.1 (25.6)	.0013**
QI-Disability	64.7 (8.1)	70.9 (11.7)	.0066**
ICND	3.3 (0.9)	3.7 (1.1)	.1094
MB-CDI vocabulary	266.0 (242.1)	278.3 (248.9)	.0647
ORCA	50.0 (13.4)	52.9 (14.8)	.0714
CSHQ	46.1 (8.0)	42.5 (5.0)	.0191*
ABC-2	70.4 (20.8)	53.2 (21.6)	.0013**
BPI frequency	28.2 (15.6) ^b	22.7 (11.1)	.0326*
VABS-3	39.4 (13.1)	42.2 (14.7)	.1710

ABC-2, Aberrant Behavior Checklist-2; BPI, Behavior Problems Inventory; CIC, Caregiver Impression of Change; CGI-I, Clinical Global Impression of Severity; CSHQ, Child Sleep Habits Questionnaire; GIHQ, Gastrointestinal Health Questionnaire; ICND, Impact of Childhood Neurological Disability scale; MB-CDI, MacArthur-Bates Communicative Development Inventory; ORCA, Observer-Reported Communication Ability; PMS, Phelan-McDermid syndrome; PMS-DSRS, PMS Clinician Domain-Specific Rating Scale; QI-Disability, Quality of Life Inventory – Disability; VABS-3, Vineland Adaptive Behavior Scales-3. *P <.05; **P <.01; ***P <.01 for change from baseline (or observed change relative to baseline for CGI-I and CIC) vs null median based on Wilcoxon signed-rank test.

Baseline scores were determined as the average scores from visits during the baseline/screening period for assessments collected at more than 1 visit during the baseline/screening period. CGI-I overall scores and CIC total scores range from 1–7; lower scores indicate improvement (below 4), a score of 4 indicates no change, and higher scores (above 4) indicate worsening.


CGI-S overall scores range from 1–7; higher scores indicate greater impairment. PMS-DSRS overall scores range from 0–20; higher scores indicate more severe symptoms. Caregiver top 3 concerns overall severity scores range from 0–30; higher scores indicate more severe symptoms. GIHQ total frequency scores range from 0–197; higher scores indicate greater gastrointestinal problems. QI-Disability overall scores range from 0–100; higher scores indicate a better quality of life. ICND overall scores range from 1–6; higher scores indicate better quality of life. MB-CDI total vocabulary scores range from 0-680; higher scores indicate greater language development ORCA total scores range from 26.82–83.24; higher scores indicate greater communication ability. CSHQ total scores range from 33-99; higher scores reflect more disturbed sleep behavior.

BPI total frequency scores range from 0–120; higher scores indicate greater frequency of behavior problems VABS-3 adaptive behavior composite scores range from 20-140; higher scores reflect better adaptability.

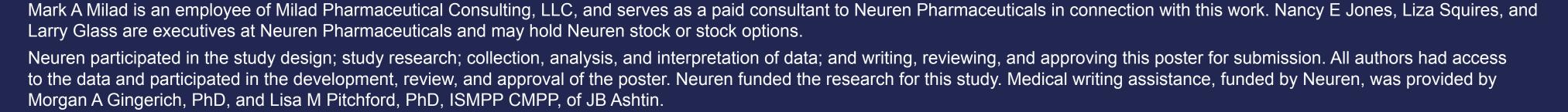
Exposure-Response Relationship

• All 15 participants who received 13 weeks of treatment with NNZ-2591 had an AUC_{24.ss} >300 μg•h/mL and showed symptomatic improvement on the PMS-anchored CGI-I scale, establishing the target minimum exposure (Figure 3) • Exposure projections estimate over 80% of children will achieve the target minimum exposure of 300 µg•h/mL with an NNZ-2591 dose of 12 mg/kg or 13 mg/kg twice daily for children weighing >20 kg or ≤20 kg, respectively

Figure 3. CGI-I Scores by NNZ-2591 Exposure at Week 13 in Children With PMS

 Participants who received 13 weeks of treatment

O Participants who did not receive 13 weeks of treatment


AUC24 set, 24-hour steady-state area under the curve; CGI-I, Clinical Global Impression - Improvement; PMS, Phelan-McDermid syndrome Dashed line represents target minimum exposure, which was determined based on visual assessment.

References

Disclosures and Acknowledgments

1. Phelan K, et al. GeneReviews[®]. May 2005 [Updated Jun 6, 2024]. Accessed Aug 23, 2024. https://www.ncbi.nlm.nih.gov/books/NBK1198/

2. Berry-Kravis, et al. *Neurology*. 2022;98(Supp 18):P17–6.001.

Disclosures: Russell Wada, Helen Kastrissios, and Milad Ghomlaghi are employees of QuanTx Consulting and serve as paid consultants to Neuren Pharmaceuticals in connection with this work.